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Dow Jones Index time series exhibit irregular or fractal 
fluctuations on all time scales from days, months to years. The 
apparently irregular (nonlinear) fluctuations are selfsimilar as 
exhibited in inverse power law form for power spectra of 
temporal fluctuations. Inverse power law form for power 
spectra of fractal fluctuations in space or time is generic to all 
dynamical systems in nature and is identified as self-organized 
criticality. Selfsimilarity implies long-range space-time 
correlations or non-local connections. It is important to 
quantify the total pattern of fractal fluctuations for 
predictability studies, e.g., weather and climate prediction, 
stock market trends, etc. The author has developed a general 
systems theory for universal quantification of the observed 
inverse power law spectra in dynamical systems. The model 
predictions are as follows. (1) The power spectra of fractal 
fluctuations follow the universal and unique inverse power 
law form of the statistical normal distribution. (2) The non-
local connections or long-range correlations in space or time 
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exhibited by the fractal fluctuations are signatures of 
quantum-like chaos in dynamical systems. (3) The apparently 
irregular geometry of the fractal fluctuations forms the 
component parts of a unified whole precise geometrical 
pattern of the logarithmic spiral with quasiperiodic Penrose 
tiling pattern for the internal structure. Conventional power 
spectral analyses will resolve the logarithmic spiral pattern as 
an eddy continuum with progressive increase in eddy phase 
angle. (4) Continuous periodogram power spectral analyses of 
normalised daily, monthly and annual Dow Jones Index for 
the past 100-years show that the power spectra follow the 
universal inverse power law form of the statistical normal 
distribution in agreement with model prediction. The fractal 
fluctuations of the non-stationary Dow Jones Index time series 
therefore exhibit signature of quantum-like chaos on all time 
scales from days to years.  

Keywords: inverse power law spectra, Dow Jones index, 
chaos, fractals, nonlinear dynamics, 1/f noise, self-organized 
criticality 

1. Introduction 

1.1 Fractal fluctuations 
Irregular (nonlinear) fluctuations on all scales of space and time are 
generic to dynamical systems in nature such as fluid flows, 
atmospheric weather patterns, heart beat patterns, stock market 
fluctuations, etc. Mandelbrot (1977) coined the name fractal for the 
non-Euclidean geometry of such fluctuations which have fractional 
dimension, for example, the rise and subsequent fall with time of the 
Dow Jones Index traces a zig-zag line in a two-dimensional plane and 
therefore has a fractional Euclidean (fractal) dimension greater than 
one but less than two. However, the evaluation of a clear fractal 
dimension from a non-stationary finite time series is an unsolved 
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problem. Mathematical models of dynamical systems are nonlinear 
and finite precision computer solutions also exhibit irregular or 
unpredictable fractal fluctuations similar to real world dynamical 
systems. Further, the computed solutions are sensitively dependent on 
initial conditions resulting in chaotic solutions, identified as 
deterministic chaos. The physics underlying nonlinear dynamics, 
fractals and chaos is now (since 1980s) an area of intensive research 
in all branches of science (Gleick, 1987).  

1.2 Fractals, self-organized criticality and Fibonacci 
series 

The fractal fluctuations of dynamical systems exhibit scale invariance 
or selfsimilarity manifested as the widely documented (Bak, Tang, 
Wiesenfeld, 1988; Bak and Chen, 1989; 1991; Schroeder, 1991; 
Stanley, 1995; Buchanan, 1997; Goldberger et al., 2002) inverse 
power law form f−α where f is the frequency and α the exponent for 
power spectra of space-time fluctuations. The amplitudes of the large 
and small-scale fluctuations are related to each other by the scale 
factor α alone. A constant value for the scale factor α indicates 
monofractals which exhibit the same scaling properties for all the 
time scale ranges. Real world dynamical processes however exhibit 
multifractal characteristics, i.e., the scale factor α varies with time 
scale range. In general the scale factor α decreases with decrease in 
frequency f and approaches 1 for large time scales indicating a 
multifractal structure for the geometry of the fluctuations. 

The power law is a distinctive experimental signature seen in a 
wide variety of complex systems. In economy it goes by the name fat 
tails, in physics it is referred to as critical fluctuations, in computer 
science and biology it is the edge of chaos, and in demographics it is 
called Zipf's law (Newman, 2000). Power-law scaling is not new to 
economics. The power law distribution of wealth discovered by 
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Vilfredo Pareto (1848-1923) in the 19th century (Eatwell, Milgate 
and Newman, 1991) predates any power laws in physics (Farmer, 
1999).  

Bak et al. (1987; 1988) postulated in 1987 that fractal geometry to 
spatial pattern and associated fractal fluctuations of dynamical 
processes in time are signatures of self-organized criticality in the 
spatiotemporal evolution of dynamical system. The relation between 
spatial and temporal power-law behaviour was recognized much 
earlier in condensed matter physics where long-range spatiotemporal 
correlations appear spontaneously at the critical point for continuous 
phase transitions. The amplitudes of large and small-scale fluctuation 
are obtained from the same mathematical function using appropriate 
scale factor, i.e. ratio of the scale lengths. This property of self-
similarity is often called a renormalization group relation in physics 
(Wilson, 1979; West, 1990a,b; Peitgen et al., 1992) in the area of 
continuous phase transitions at critical points (Weinberg, 1993; Back 
et al., 1995). When a system is poised at a critical point between two 
macroscopic phases, e.g., vapour to liquid, it exhibits dynamical 
structures on all available spatial scales, even though the underlying 
microscopic interactions tend to have a characteristic length scale 
(Back et al., 1995). But, in order to arrive at the critical point, one has 
to fine-tune an external control parameter, such as temperature, 
pressure or magnetic field, in contrast to the phenomena described 
above for dynamical systems which occur universally without any 
fine-tuning. The explanation is that open extended dissipative 
dynamical systems, i.e., systems not in thermodynamic equilibrium 
may go automatically to the critical state as long as they are driven 
slowly. 

Time series analyses of global market economy also exhibits 
power law behaviour (Bak et al., 1992; Mantegna and Stanley, 1995; 
Sornette et al., 1995; Chen, 1996a, b; Stanley et al., 1996; 
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Gopikrishnan et al., 1999; Plerou et al., 1999; Stanley et al., 2000; 
Gabaix et al., 2003) with possible multifractal structure (Farmer, 
1999) and has suggested an analogy to fluid turbulence (Ghasgaie et 
al., 1996; Arneodo et al., 1998; Sornette, 2002). The stock market can 
be viewed as a self-organizing cooperative system presenting power 
law distributions, large events in possible co-existence with 
synchronized behaviour (Sornette et al., 1995). Sornette et al. (1995) 
also conclude that the observed power law represents structures 
similar to 'Elliott waves' of technical analysis first introduced in the 
1930s. It describes the time series of a stock price as made of different 
waves; these waves are in relation to each other through the 
Fibonacci series. Sornette et al. (1995) speculate that 'Elliott waves' 
could be a signature of an underlying critical structure of the stock 
market. Chen (1996b) has identified color chaos and persistent cycles 
with characteristic period of around three to four years in time series 
analyses of Standard and Poor stock price indices. 

Incidentally the Fibonacci series represent a fractal tree-like 
branching network of selfsimilar structures (Stewart, 1992). The 
general systems theory presented in this paper shows (Section 2) that 
Fibonacci series underlies fractal fluctuations on all space-time 
scales.  

3.  1/f noise and multifractal scaling 
In the past few years, scientists have been making rapid progress in 
developing models and theories for understanding the observed scale-
invariant behaviour in driven, nonlinear dynamical systems. It is 
important to make quantitative comparisons between theoretical 
models and experimental systems (Sethna et al., 2001). Multifractal 
signals generic to dynamical systems are intrinsically more complex 
and inhomogeneous than monofractals. The quantification of the 
commonly observed multifractal signals in dynamical systems is of 
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interest for a number of reasons. In the case of physiological time 
series, a majority of previous investigations have focused only on the 
quantification of a single exponent (i.e., monofractal behaviour) 
(Goldberger et al., 2002) to characterize the observed 1/f-like scaling. 
Sornette (2002) has investigated a wide range of dynamical systems 
and concludes that the dynamical processes can exhibit power law 
behaviour with superimposed log-periodic oscillations. Empirical 
analyses of aggregate stock market price fluctuations have identified 
simple power-law (monofractal) behaviour (Stanley et al., 2002). The 
physics underlying the multifractal structure generic to space-time 
fluctuations of dynamical systems is yet to be identified and 
quantified. 

Self-organized criticality implies long-range correlations or non-
local connections in temporal (or spatial) fluctuations of the 
dynamical system. Prediction of the future evolution of the dynamical 
system requires precise quantification of the observed multifractal 
fluctuations. The author has developed a general systems theory 
(Capra, 1996), which predicts the observed long-range correlations 
as a signature of quantum-like chaos in the macro-scale dynamical 
system (Mary Selvam, 1990; Mary Selvam, Pethkar and Kulkarni, 
1992; Selvam and Fadnavis, 1998). The model also provides 
universal and unique quantification for the observed quantum-like 
chaos characterizing dynamical systems in terms of the statistical 
normal distribution. 

Continuous periodogram power spectral analyses of Dow Jones 
Index time series of widely different time scales (days, months, years) 
and data lengths (100 to 10000 in the case of daily data sets) agree 
with model prediction, namely, the power spectra follow the universal 
inverse power law form of the statistical normal distribution. Dow 
Jones Index time series therefore exhibit long-range temporal 
correlations or persistence (memory), which is a signature of 
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quantum-like chaos. Earlier studies by the author have identified 
quantum-like chaos exhibited by dynamical systems underlying the 
observed fractal fluctuations of the following data sets: (1) time series 
of meteorological parameters (Mary Selvam, Pethkar and Kulkarni, 
1992; Selvam and Joshi, 1995; Selvam et al., 1996; Selvam and 
Fadnavis, 1998) (2) spacing intervals of adjacent prime numbers 
(Selvam and Suvarna Fadnavis, 1998; Selvam, 2001a) (3) spacing 
intervals of adjacent non-trivial zeros of the Riemann zeta function 
(Selvam, 2001b). 

2. A General systems theory for universal 
quantification of fractal fluctuations of 
dynamical systems 

As mentioned earlier (Section 1: Introduction) power spectral 
analyses of fractal space-time fluctuations exhibits inverse power law 
form, i.e., a selfsimilar eddy continuum. The cell dynamical system 
model (Mary Selvam, 1990; Selvam and Fadnavis, 1998, and all 
references contained therein; Selvam, 2001a, b) is a general systems 
theory (Capra, 1996) applicable to dynamical systems of all size 
scales. The model shows that such an eddy continuum can be 
visualised as a hierarchy of successively larger scale eddies enclosing 
smaller scale eddies. Eddy or wave is characterised by circulation 
speed and radius. Large eddies of root mean square (r.m.s) circulation 
speed W and radius R form as envelopes enclosing small eddies of 
r.m.s circulation speed w* and radius r such that 

 22 w
R
r2

W ∗=
π

 (2.1) 

Large eddies are visualised to grow at unit length step increments 
at unit intervals of time, the units for length and time scale increments 
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being respectively equal to the enclosed small eddy perturbation 
length scale r and the eddy circulation time scale t.  

Since the large eddy is but the average of the enclosed smaller 
eddies, the eddy energy spectrum follows the statistical normal 
distribution according to the Central Limit Theorm (Ruhla, 1992). 
Therefore, the variance represents the probability densities. Such a 
result that the additive amplitudes of eddies when squared, represent 
the probabilities is an observed feature of the subatomic dynamics of 
quantum systems such as the electron or photon (Maddox 1988a, 
1993; Rae, 1988). The fractal space-time fluctuations exhibited by 
dynamical systems are signatures of quantum-like mechanics. The 
cell dynamical system model provides a unique quantification for the 
apparently chaotic or unpredictable nature of such fractal fluctuations 
(Selvam and Fadnavis, 1998). The model predictions for quantum-
like chaos of dynamical systems are as follows. 

(a) The observed fractal fluctuations of dynamical systems are 
generated by an overall logarithmic spiral trajectory with the 
quasiperiodic Penrose tiling pattern (Nelson, 1986; Selvam 
and Fadnavis, 1998) for the internal structure. 

(b) Conventional continuous periodogram power spectral 
analyses of such spiral trajectories will reveal a continuum of 
periodicities with progressive increase in phase. 

(c) The broadband power spectrum will have embedded 
dominant wavebands, the bandwidth increasing with period 
length. The peak periods (or length scales) En in the dominant 
wavebands will be given by the relation. 

 ( ) n
sn TE ττ+= 2  (2.2) 

where τ is the golden mean equal to (1+√ 5)/2 [≅ 1.618] and Ts 
the primary perturbation time (length) scale.  
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The model predicted periodicities (or length scales) in terms 
of the primary perturbation length scale units are 2.2, 3.6, 5.8, 
9.5, 15.3, 24.8, 40.1, 64.9, 105.0, 170.0, 275.0, 445.0 and 
720.0 respectively for values of n ranging from -1 to 11. 
Periodicities close to model predicted have been reported in 
weather and climate variability (Burroughs 1992; Kane 1996). 

(d) The ratio r/R (Equation 2.1) also represents the increment dθ 
in phase angle θ. Therefore the phase angle θ represents the 
variance. Hence, when the logarithmic spiral is resolved as an 
eddy continuum in conventional spectral analysis, the 
increment in wavelength is concomitant with increase in 
phase (Selvam and Fadnavis, 1998). Such a result that 
increments in wavelength and phase angle are related is 
observed in quantum systems and has been named 'Berry's 
phase' (Berry 1988; Maddox 1988b; Simon et al., 1988; 
Anandan, 1992). The relationship of angular turning of the 
spiral to intensity of fluctuations is seen in the tight coiling of 
the hurricane spiral cloud systems. The overall logarithmic 
spiral flow structure is given by the relation 

 zlog
k
w

W ∗=  (2.3) 

where, the constant k is the steady state fractional volume 
dilution of large eddy by inherent turbulent eddy fluctuations. 
The constant k is equal to 1/τ2 (≅0.382) and is identified as the 
universal constant for deterministic chaos in fluid flows 
(Selvam and Fadnavis, 1998). The steady state emergence of 
fractal structures is therefore equal to 

 62.2
1

≅
k

 (2.4) 
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In Equation 2.3, W represents the standard deviation of eddy 
fluctuations, since W is computed as the instantaneous r.m.s. (root 
mean square) eddy perturbation amplitude with reference to the 
earlier step of eddy growth. For two successive stages of eddy growth 
starting from primary perturbation w* the ratio of the standard 
deviations Wn+1 and Wn is given from Equation 2.3 as (n+1)/n. 
Denoting by σ the standard deviation of eddy fluctuations at the 
reference level (n=1), the standard deviations of eddy fluctuations for 
successive stages of eddy growth are given as integer multiple of σ, 
i.e., σ , 2σ , 3σ , etc., and correspond respectively to 
 .etc,3,2,1,0deviationdardtansnormalizedlstatistica =  (2.5) 

The conventional power spectrum plotted as the variance versus 
the frequency in log-log scale will now represent the eddy probability 
density on logarithmic scale versus the standard deviation of the eddy 
fluctuations on linear scale since the logarithm of the eddy 
wavelength represents the standard deviation, i.e., the r.m.s. value of 
eddy fluctuations (Equation 2.3). The r.m.s. value of eddy fluctuations 
can be represented in terms of statistical normal distribution as 
follows. A normalized standard deviation t=0 corresponds to 
cumulative percentage probability density equal to 50 for the mean 
value of the distribution. Since the logarithm of the wavelength 
represents the r.m.s. value of eddy fluctuations the normalized 
standard deviation t is defined for the eddy energy as 

 1
Tlog
Llog

t
50

−=  (2.6) 

where L is the period (in time units) and T50 is the period up to which 
the cumulative percentage contribution to total variance is equal to 50 
and t = 0. The variable logT50 also represents the mean value for the 
r.m.s. eddy fluctuations and is consistent with the concept of the mean 
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level represented by r.m.s. eddy fluctuations. Spectra of time series of 
fluctuations of dynamical systems, for example, meteorological 
parameters, when plotted as cumulative percentage contribution to 
total variance versus t follow the model predicted universal spectrum 
(Selvam and Fadnavis, 1998, and all references therein).  

The period (or length scale) T50 up to which the cumulative 
percentage contribution to total variances is equal to 50 is computed 
from model concepts as follows. The power spectrum, when plotted 
as normalised standard deviation t versus cumulative percentage 
contribution to total variance represents the statistical normal 
distribution (Equation 2.6), i.e., the variance represents the probability 
density. The normalized standard deviation values t corresponding to 
cumulative percentage probability density P equal to 50 is equal to 0 
from statistical normal distribution characteristics. Since t represents 
the eddy growth step n (Equation 2.5) the dominant period (or length 
scale) T50 up to which the cumulative percentage contribution to total 
variance is equal to 50 is obtained from Equation 2.2 for 
corresponding value of n equal to 0. In the present study of fractal 
fluctuations of Dow Jones Index, the primary perturbation length 
scale Ts is equal to unit time interval (days, months or years) and T50 
is obtained as 

 ( ) ervalinttimeunit6.32T 0
50 ≅+= ττ  (2.7) 

The above model predictions are applicable to all real world and 
computed model dynamical systems. Continuous periodogram power 
spectral analyses of Dow Jones Index of widely different time scales 
and data lengths give results in agreement with the above model 
predictions. Different data lengths of the non-stationary Dow Jones 
Index time series follow the model predicted universal inverse power 
law form of the statistical normal distribution. 
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3.  Data and Analysis 
Dow Jones Index values were obtained from Dow Jones Industrial 
Average History File, Dow Jones closing prices starting in 1900: 3 
Jan 1900 to 5 June 2000 (27523 trading days). Data from: Department 
of Statistics at Carnegie Mellon Univ., 
(http://www.stat.cmu.edu/cmu-stats) Quote.com (http://quote.com/) 
Yahoo! (http://quote.yahoo.com/).  

The normalised day-to-day changes in the Dow Jones Index values 
were computed as percentages of the earlier day value. Monthly and 
annual mean values were then computed from the normalised day- to- 
day changes in the Dow Jones Index.  

A total of 27,500 daily values of normalised Dow Jones Index 
were used for the study. Starting from the Dow Jones Index values on 
day numbers 1, 10001, and 20001 respectively, the number of days 
used for the spectral analyses were in increments of 100 days up to 
2500 days (25 data sets) and thereafter, in increments of 500 days till 
10000 days (15 data sets) giving a total of 115 data sets.  

A total of 1200 monthly mean values of Dow Jones Index were 
available for the study. A total of 11 data sets were subjected to 
spectral analyses. Starting from the first month, the number of months 
used for the spectral analyses for the first 10 data sets were in 
increments of 100 months till 1000 months and the 11th data set 
contains 1200 months.  

A total of 100 annual mean Dow Jones Index values were 
available for the study. Starting from the first year, the number of 
years used for power spectral analysis for successive data sets were in 
increments of 20 years, thereby giving a total of 5 data sets. 

Details of data sets used for the study are shown in Figures 4a, 4b 
and 4c. 
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3.1 Fractal nature of Dow Jones Index fluctuations on 
time scales of days to years 

The normalised daily, monthly and annual fluctuations of Dow Jones 
Index exhibit irregular fractal fluctuations as shown for representative 
data sets in Figure 1. 
Figure 1: Fractal fluctuations of normalised daily, monthly and annual fluctuations in 

Dow Jones Index for the 100-year (1900 to 1999) data set 
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3.2 Continuous periodogram power spectral analyses 
The broadband power spectrum of space-time fluctuations of 
dynamical systems can be computed accurately by an elementary, but 
very powerful method of analysis developed by Jenkinson (1977) 
which provides a quasi-continuous form of the classical periodogram 
allowing systematic allocation of the total variance and degrees of 
freedom of the data series to logarithmically spaced elements of the 
frequency range (0.5, 0). The periodogram is constructed for a fixed 
set of 10000(m) periodicities Lm which increase geometrically as 
Lm=2 exp (Cm) where C=.001 and m=0, 1, 2,....m . The data series Yt 
for the N data points was used. The periodogram estimates the set of 
Amcos(2πνmS-φm) where Am, νm and φm denote respectively the 
amplitude, frequency and phase angle for the mth periodicity and S is 
the time interval in days, months or years. The cumulative percentage 
contribution to total variance was computed starting from the high 
frequency side of the spectrum. The period T50 at which 50% 
contribution to total variance occurs is taken as reference and the 
normalized standard deviation tm values are computed as (Equation 
2.6). 

 1
Tlog
Llog

t
50

m
m −=   

The cumulative percentage contribution to total variance, the 
cumulative percentage normalized phase (normalized with respect to 
the total phase rotation) and the corresponding t values were 
computed. The power spectra were plotted as cumulative percentage 
contribution to total variance versus the normalized standard 
deviation t as given above. The period L is in time interval units 
(days, months or years). Periodicities up to T50 contribute up to 50% 
of total variance. The phase spectra were plotted as cumulative 
percentage normalized (normalized to total rotation) phase. 



 Apeiron, Vol. 10, No. 4, October 2003 15 

© 2003 C. Roy Keys Inc. 

3.3 Power spectral analyses: Representative variance 
and phase spectra 

The variance and phase spectra along with statistical normal 
distributions are shown in Figure 2 for representative data sets of 
normalised daily, monthly and annual Dow Jones Index. The 
'goodness of fit' (statistical chi-square test) between the variance 
spectra and statistical normal distribution is significant at less than or 
equal to 5% level for all the daily and monthly spectra. In the case of 
annual data sets, the variance spectra follow normal distribution for 
all data sets except for the first set consisting of the first 20-years 
(1900 to 1919). Phase spectra are close to the statistical normal 
distribution, with the 'goodness of fit' being statistically significant for 
all monthly and annual data sets and 66% of daily data sets. Further, 
in all the cases, the 'goodness of fit' between variance and phase 
spectra are statistically significant (chi-square test) for individual 
dominant wavebands, in particular, for longer periodicities. A 
representative example of daily data set is shown, where, though the 
phase spectrum does not follow normal distribution (Figure 2), the 
phase and variance spectra are the same in dominant wavebands 
(Figure 3). 
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Figure 2: Representative spectra of variance and phase along with statistical 
normal distribution for normalized daily, monthly and annual fluctuations of 
Dow Jones Index. The variance spectra for all data sets and phase spectra 
for monthly and annual data sets follow the model predicted statistical normal 
distribution. The phase spectrum does not follow the normal distribution for 
the sample daily data set, but the variance and phase spectra are the same 
in individual dominant eddies as shown in Figure 3 for the same data set 
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Figure 3: A representative example of daily data set is shown, where, though the 
phase spectrum does not follow normal distribution (Figure 2), the phase and 
variance spectra are the same in dominant wavebands as shown below. The 
variance and phase spectra being the same is a signature of Berry's phase in 
quantum systems 
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3.4 Power spectral analyses: Summary of results 
The periodicities T50 up to which the cumulative percentage 
contribution to total variance is equal to 50 are shown for the three 
groups of Dow Jones Index data sets, namely, daily (115 data sets), 
monthly (11 data sets) and annual (5 data sets) in Figures 4 (a, b and 
c) respectively. 
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Figure 4a: The period T50 up to which the cumulative percentage contribution to 
total variance is equal to 50 for 115 data sets of normalised daily Dow Jones 
Index. Details are also given of data set length, data mean and data standard 
deviation 
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Figure 4b: The period T50 up to which the cumulative percentage contribution to 
total variance is equal to 50 for 11 data sets of normalized monthly Dow 
Jones Index. Details are also given of data set length, data mean and data 
standard deviation 
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Figure 4c: The period T50 up to which the cumulative percentage contribution to 
total variance is equal to 50 for 5 data sets of normalized annual Dow Jones 
Index. Details are also given of data set length, data mean and data standard 
deviation 
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4. Results and Discussion 
The Dow Jones Index time series (daily, monthly and annual) exhibit 
fractal fluctuations (Figures 1) generic to dynamical systems in 
nature. The fractal fluctuations are basically a zig-zag pattern of 
successive upward and downward swings on all time scales in the 
Dow Jones Price Index. Such irregular fluctuations may be visualised 
to result from the superimposition of a continuum of eddies. Power 
spectral analysis is commonly applied to resolve the component 
periodicities and their phases. Continuous periodogram power 
spectral analyses of the fractal fluctuations in Dow Jones Index time 
series (daily, monthly and annual) follow closely the following model 
predictions given in Section 2. 

(1) The variance spectra follow statistical normal distribution for 
all the three (daily, monthly and annual) data groups except 
for the first data set of length 20 years (1900 to 1919) annual 
mean Dow Jones Index time series. 

(2) Phase spectra follow normal distribution for 66% of daily 
data sets and for 100% data sets of the monthly and annual 
data groups. 

(3) The period T50 up to which the cumulative percentage 
contribution to total variance is equal to 50% is very close to 
model predicted value of about 3.6 time units (daily, monthly 
or annual) for annual and monthly data sets. The daily data 
sets showed higher values for data set numbers 81 to 108. 
Incidentally these data sets 81 to 108 correspond to the period 
just prior to and following the oil shock of the year 1973 
(Chen 1996a,b). Though the data length varied from 100 to 
10000 for daily data sets, the value of T50 was relatively 
constant and close to the model predicted values (Figures 4a, 
b, c). 
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5. Conclusions 
The observed inverse power law form for power spectra of fractal 
fluctuations is a signature of long-range temporal correlations and 
may signify self-organized criticality in aggregate market economy. 
The author had shown earlier (Selvam and Suvarna Fadnavis, 1998; 
Selvam 2001a,b) that (a) the observed long-range space-time 
correlations in dynamical systems can be quantified in terms of the 
universal inverse power law form of the statistical normal distribution 
and (b) selfsimilar fractal fluctuations imply long-range space-time 
correlations and is a signature of quantum-like chaos in macro-scale 
dynamical systems of all space-time scales. 

Power spectra of normalised daily, monthly and annual 
fluctuations of Dow Jones Index time series follow the model 
predicted universal and unique inverse power law form of the 
statistical normal distribution. Inverse power law form for power 
spectra of temporal fluctuations imply long-range temporal 
correlations, or in other words, persistence or long-term memory of 
short-term fluctuations. The long-time period fluctuations carry the 
signatures of short-time period fluctuations. The cumulative 
integration of short-term fluctuations generates long-term fluctuations 
(eddy continuum) with two-way ordered energy feedback between 
the fluctuations of all time scales (Equation 2.1). The eddy continuum 
acts as a robust unified whole fuzzy logic network with global 
response to local perturbations. Increase in random noise or energy 
input into the short-time period fluctuations creates intensification of 
fluctuations of all other time scales in the eddy continuum and may be 
noticed immediately in shorter period fluctuations. Noise is therefore 
a precursor to signal. 

Real world examples of noise enhancing signal has been reported 
in electronic circuits (Brown, 1996). Man-made, urbanization related, 
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greenhouse gas induced global warming (enhancement of small-scale 
fluctuations) is now held responsible for devastating anomalous 
changes in regional and global weather and climate in recent years 
(Selvam and Fadnavis, 1998). 

The periodicities T50 up to which the cumulative percentage 
contribution to total variance is equal to 50 are close to model 
predicted value of 3.6 for the data groups of widely different time 
scale units (days, months and years) and different data lengths (100 to 
10000 for daily data sets 

The apparently irregular fractal fluctuations of the Dow Jones 
Index as a representative example in this study and dynamical 
systems in general, self-organize spontaneously to generate the robust 
geometry of logarithmic spiral with the quasiperiodic Penrose tiling 
pattern for the internal structure. Conventional power spectral 
analyses resolves such a logarithmic spiral geometry as an eddy 
continuum exhibiting inverse power law form of the statistical normal 
distribution. Power spectral analyses of different time period data sets 
of the non-stationary Dow Jones Index time series are in agreement 
with model predictions.  
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